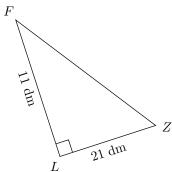
Name: Short Test: pythagorean theorem
 Exercise 1 a. The triangle LZA has a right angle in Z. ZA = 4,4 m. AL = 5,5 m. Calculate the length of [LZ]. Give the result in m. b. The triangle FLZ has a right angle in L. FL = 11 dm. LZ = 21 dm. Calculate the length of [ZF]. Give the result in dm. Round the result au centième.
Name: Short Test: pythagorean theorem
Exercise 1 a. The triangle BKE has a right angle in K. BK = 144 dm. KE = 191 dm. Calculate the length of [EB]. Give the result in dm. Round the result au dixième. b. The triangle RQH has a right angle in Q. RQ = 4 m. HR = 5,8 m. Calculate the length of [QH]. Give the result in m.
Name: Short Test: pythagorean theorem
 Exercise 1 a. The triangle LZA has a right angle in Z. ZA = 4,4 m. AL = 5,5 m. Calculate the length of [LZ]. Give the result in m. b. The triangle FLZ has a right angle in L. FL = 11 dm. LZ = 21 dm. Calculate the length of [ZF]. Give the result in dm. Round the result au centième.
Name: Short Test: pythagorean theorem

Exercise 1

- **a.** The triangle BKE has a right angle in K. BK = 144 dm. KE = 191 dm. Calculate the length of [EB]. Give the result in dm. Round the result au dixième.
- **b.** The triangle RQH has a right angle in Q. RQ = 4 m. HR = 5.8 m. Calculate the length of [QH]. Give the result in m.


Examples of answers

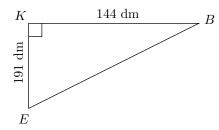
Exercise 1

 \mathbf{a} . Sketch:

b. Sketch:

The triangle LZA has a right angle in Z. Then by Pythagoras theorem:

$$\begin{split} LZ^2 &= AL^2 - ZA^2 \\ LZ^2 &= 5, 5^2 - 4, 4^2 \\ LZ^2 &= 30, 25 - 19, 36 \\ LZ^2 &= 10, 89 \\ LZ &= \sqrt{10, 89} \text{ because LZ is positive.} \\ LZ &= 3, 3 \text{ m} \end{split}$$


The triangle FLZ has a right angle in L. Then by Pythagoras theorem :

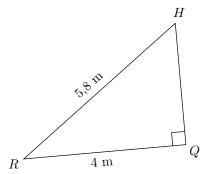
$$ZF^2 = FL^2 + LZ^2$$

$$ZF^2 = 11^2 + 21^2$$

$$ZF^2 = 121 + 441$$

$$ZF^2 = 562$$

$$ZF = \sqrt{562}$$
 because ZF is positive.
$$ZF \simeq 23,71 \text{ dm}$$


Examples of answers

Exercise 1

 $\mathbf{a.}$ Sketch:

b. Sketch:

The triangle BKE has a right angle in K. Then by Pythagoras theorem:

$$EB^{2} = BK^{2} + KE^{2}$$

$$EB^{2} = 144^{2} + 191^{2}$$

$$EB^{2} = 20736 + 36481$$

$$EB^{2} = 57217$$

$$EB = \sqrt{57217}$$
 because EB is positive.

 $EB \simeq 239, 2 \text{ dm}$

The triangle RQH has a right angle in Q. Then by Pythagoras theorem :

$$QH^{2} = HR^{2} - RQ^{2}$$

$$QH^{2} = 5, 8^{2} - 4^{2}$$

$$QH^{2} = 33, 64 - 16$$

$$QH^{2} = 17, 64$$

$$QH = \sqrt{17, 64}$$
 because QH is positive.
$$QH = 4, 2 \text{ m}$$