mathmaker  0.6(alpha)
Public Member Functions | Properties
core.base_calculus.Operation Class Reference

Abstract mother class of Quotient and of CommutativeOperation. More...

Inheritance diagram for core.base_calculus.Operation:
core.root_calculus.Exponented core.root_calculus.Signed core.root_calculus.Calculable core.root_calculus.Evaluable core.base.Printable core.base.NamedObject core.base.Clonable core.base_calculus.CommutativeOperation core.base_calculus.Quotient core.base_calculus.Product core.base_calculus.Sum core.base_calculus.Fraction core.base_calculus.Expandable core.base_calculus.Monomial core.base_calculus.Polynomial core.base_calculus.BinomialIdentity

List of all members.

Public Member Functions

def __init__
 Constructor.
def get_element
 Returns the list of elements.
def get_neutral
 Returns the list of elements to iter over.
def get_symbol
 Returns the symbol field of the Operation.
def get_iteration_list
 Returns the list of elements to iter over.
def set_element
def set_symbol
 Resets the element field.
def reset_element
 Resets the element field.
def __hash__
 Makes any Operation hashable (so, usable as dictionnary keys)
def __getitem__
 It is possible to index an CommutativeOperation.
def __setitem__
def operator
 Defines the performed CommutativeOperation.
def is_expandable
 True if the Operation contains any Expandable.
def is_numeric
 True if the Operation contains only numeric elements.
def is_literal
 True if the Operation contains only literal terms.

Properties

 element
 neutral
 symbol

Detailed Description

Abstract mother class of Quotient and of CommutativeOperation.

Definition at line 1861 of file base_calculus.py.


Constructor & Destructor Documentation

Constructor.

Warning:
Operation objects are not really usable
Returns:
An "instance" of Operation

Reimplemented from core.root_calculus.Exponented.

Reimplemented in core.base_calculus.CommutativeOperation.

Definition at line 1872 of file base_calculus.py.

References core.base_calculus.Operation._element, core.base_calculus.Operation._neutral, and core.base_calculus.Operation._symbol.

Referenced by core.calculus.Equation.__init__(), and core.root_calculus.Value.substitute().


Member Function Documentation

True if the Operation contains any Expandable.

Returns:
True|False

Reimplemented in core.base_calculus.Expandable.

Definition at line 2032 of file base_calculus.py.

def core.base_calculus.Operation.set_element (   self,
  n,
  arg 
)
Parameters:
n: number of the element to set
arg: the object to put as n-th element

Definition at line 1955 of file base_calculus.py.

References core.base_calculus.Operation._element.

Referenced by core.base_calculus.Product.set_factor(), and core.base_calculus.Sum.set_term().


Property Documentation

core::base_calculus.Operation::element [static]
Initial value:
property(get_element,
                       doc = "element field of Operation")

Definition at line 1937 of file base_calculus.py.

Referenced by core.base_calculus.Operation.__hash__(), core.base_calculus.Product.__hash__(), core.base_calculus.Monomial.__init__(), core.base_calculus.CommutativeOperation.__len__(), core.base_calculus.CommutativeOperation.contains_exactly(), core.base_calculus.CommutativeOperation.dbg_str(), core.base_calculus.CommutativeOperation.evaluate(), core.base_calculus.Product.get_factors_list(), core.base_calculus.CommutativeOperation.get_first_letter(), core.base_calculus.Operation.get_iteration_list(), core.base_calculus.Sum.get_literal_terms(), core.base_calculus.Product.get_minus_signs_nb(), core.base_calculus.Sum.get_numeric_terms(), core.base_calculus.CommutativeOperation.get_sign(), core.base_calculus.Sum.get_terms_lexicon(), core.base_calculus.Product.into_str(), core.base_calculus.Product.is_displ_as_a_single_0(), core.base_calculus.Sum.is_displ_as_a_single_1(), core.base_calculus.Product.is_displ_as_a_single_minus_1(), core.base_calculus.Sum.is_displ_as_a_single_minus_1(), core.base_calculus.CommutativeOperation.is_displ_as_a_single_neutral(), core.base_calculus.CommutativeOperation.is_displ_as_a_single_numeric_Item(), core.base_calculus.Monomial.is_negative(), core.base_calculus.Product.is_null(), core.base_calculus.Monomial.is_positive(), core.base_calculus.CommutativeOperation.remove(), core.base_calculus.Monomial.set_letter(), and core.base_calculus.CommutativeOperation.throw_away_the_neutrals().

core::base_calculus.Operation::neutral [static]
Initial value:
property(get_neutral,
                       doc = "neutral field of Operation")

Definition at line 1940 of file base_calculus.py.

Referenced by core.base_calculus.CommutativeOperation.evaluate(), core.base_calculus.Product.into_str(), and core.base_calculus.CommutativeOperation.throw_away_the_neutrals().

core::base_calculus.Operation::symbol [static]

The documentation for this class was generated from the following file: