mathmaker
0.4(alpha)
|
Abstract mother class of Product and Sum. More...
Public Member Functions | |
def | __init__ |
Constructor. | |
def | get_compact_display |
Returns the compact_display field of a CommutativeOperation. | |
def | get_info |
Allow the subclasses to access this field. | |
def | get_first_letter |
If the Product is literal, returns the first factor's letter. | |
def | get_sign |
Returns the sign of the first element of the CommutativeOperation. | |
def | set_info |
Sets the info field of the CommutativeOperation. | |
def | set_sign |
Sets the sign of the first element of the CommutativeOperation. | |
def | set_compact_display |
Sets a value to the compact_display field. | |
def | evaluate |
Returns the value (number) of an numerically evaluable CommutativeOperation. | |
def | dbg_str |
Raw display of the CommutativeOperation (debugging method) | |
def | __len__ |
Returns the number of elements of the CommutativeOperation. | |
def | contains_exactly |
True if the CommutativeOperation contains exactly the given objct It can be used to detect objects embedded in this CommutativeOperation. | |
def | contains_a_rounded_number |
To check if this contains a rounded number... | |
def | append |
Appends a given element to the current CommutativeOperation. | |
def | remove |
Removes a given element from the current CommutativeOperation. | |
def | throw_away_the_neutrals |
Returns self without the equivalent-to-a-single-neutral elements. | |
def | is_displ_as_a_single_neutral |
True if the object can be displayed as a single neutral element. | |
def | is_displ_as_a_single_numeric_Item |
True if the CommutativeOperation contains only one numeric Item. | |
def | is_displ_as_a_single_int |
True if the object can be displayed as a single int. | |
Public Attributes | |
str_openmark | |
str_closemark | |
Properties | |
info = property(get_info, doc="info field of a CommutativeOperation") | |
compact_display |
Abstract mother class of Product and Sum.
Gathers common methods.
Definition at line 3725 of file base_calculus.py.
def core.base_calculus.CommutativeOperation.__init__ | ( | self | ) |
Constructor.
Reimplemented from core.base_calculus.Operation.
Definition at line 3736 of file base_calculus.py.
References core.base_calculus.CommutativeOperation._compact_display, core.base_calculus.CommutativeOperation._info, core.base_calculus.CommutativeOperation.str_closemark, and core.base_calculus.CommutativeOperation.str_openmark.
Referenced by core.calculus.Equation.__init__(), and core.root_calculus.Value.substitute().
def core.base_calculus.CommutativeOperation.append | ( | self, | |
elt | |||
) |
Appends a given element to the current CommutativeOperation.
elt | The element to append (assumed to be a Exponented) |
Definition at line 4004 of file base_calculus.py.
Referenced by core.base_calculus.Polynomial.__init__().
To check if this contains a rounded number...
Reimplemented from core.root_calculus.Evaluable.
Definition at line 3989 of file base_calculus.py.
def core.base_calculus.CommutativeOperation.contains_exactly | ( | self, | |
objct | |||
) |
True if the CommutativeOperation contains exactly the given objct It can be used to detect objects embedded in this CommutativeOperation.
objct | The object to search for |
Reimplemented from core.root_calculus.Evaluable.
Definition at line 3974 of file base_calculus.py.
References core.base_calculus.Operation.element.
Referenced by core.base_calculus.CommutativeOperation.remove().
def core.base_calculus.CommutativeOperation.dbg_str | ( | self, | |
options | |||
) |
Raw display of the CommutativeOperation (debugging method)
options | : info='OK' let dbg_str display more info |
Reimplemented in core.base_calculus.Polynomial, and core.base_calculus.Monomial.
Definition at line 3928 of file base_calculus.py.
References core.base_calculus.CommutativeOperation.compact_display, core.base_calculus.Operation.element, core.base_calculus.CommutativeOperation.info, core.base_calculus.CommutativeOperation.str_closemark, core.base_calculus.CommutativeOperation.str_openmark, core.base_calculus.Operation.symbol, and core.base_calculus.Quotient.symbol.
Referenced by core.base_calculus.Polynomial.__init__(), core.base_calculus.Sum.calculate_next_step(), core.base_calculus.CommutativeOperation.evaluate(), core.base_calculus.Product.expand_and_reduce_next_step(), core.base_calculus.Sum.expand_and_reduce_next_step(), core.base_calculus.Product.get_factors_list(), core.base_calculus.Product.get_factors_list_except(), core.base_calculus.Product.into_str(), core.base_calculus.Sum.into_str(), core.base_calculus.Product.is_reducible(), core.base_calculus.Product.reduce_(), core.base_calculus.Sum.reduce_(), core.base_calculus.CommutativeOperation.remove(), core.root_calculus.Signed.set_opposite_sign(), core.root_calculus.Value.set_opposite_sign(), core.calculus.Equation.solve_next_step(), and core.base_calculus.CommutativeOperation.throw_away_the_neutrals().
def core.base_calculus.CommutativeOperation.evaluate | ( | self, | |
options | |||
) |
Returns the value (number) of an numerically evaluable CommutativeOperation.
Definition at line 3855 of file base_calculus.py.
References core.root_calculus.Calculable.calculate_next_step(), core.base_calculus.Item.calculate_next_step(), core.root_calculus.Value.calculate_next_step(), core.base_calculus.SquareRoot.calculate_next_step(), core.base_calculus.Quotient.calculate_next_step(), core.base_calculus.Fraction.calculate_next_step(), core.base_calculus.Product.calculate_next_step(), core.base_calculus.Sum.calculate_next_step(), core.base_calculus.Item.dbg_str(), core.base_calculus.SquareRoot.dbg_str(), core.base_calculus.Quotient.dbg_str(), core.base_calculus.Fraction.dbg_str(), core.base_calculus.CommutativeOperation.dbg_str(), core.base_calculus.Operation.element, core.base_calculus.Operation.neutral, core.base_calculus.Operation.operator(), core.base_calculus.Quotient.operator(), core.base_calculus.Product.operator(), and core.base_calculus.Sum.operator().
Referenced by core.base_calculus.Product.calculate_next_step(), core.base_calculus.Sum.expand_and_reduce_next_step(), core.base_calculus.Sum.is_null(), core.base_calculus.Product.reduce_(), and core.base_calculus.Sum.reduce_().
def core.base_calculus.CommutativeOperation.remove | ( | self, | |
elt | |||
) |
Removes a given element from the current CommutativeOperation.
elt | The element to remove (assumed to be a Exponented) |
Definition at line 4016 of file base_calculus.py.
References core.base_calculus.CommutativeOperation.contains_exactly(), core.base_calculus.Item.dbg_str(), core.base_calculus.SquareRoot.dbg_str(), core.base_calculus.Quotient.dbg_str(), core.base_calculus.Fraction.dbg_str(), core.base_calculus.CommutativeOperation.dbg_str(), and core.base_calculus.Operation.element.
def core.base_calculus.CommutativeOperation.set_compact_display | ( | self, | |
arg | |||
) |
Sets a value to the compact_display field.
arg | Must be True or False |
Definition at line 3840 of file base_calculus.py.
References core.base_calculus.CommutativeOperation._compact_display.
core::base_calculus.CommutativeOperation::compact_display [static] |
property(get_compact_display,
doc="compact_display field of a CommutativeOperation")
Definition at line 3800 of file base_calculus.py.
Referenced by core.base_calculus.Product.calculate_next_step(), core.base_calculus.CommutativeOperation.dbg_str(), core.base_calculus.Product.get_factors_list(), core.base_calculus.Product.into_str(), core.base_calculus.Sum.into_str(), core.base_calculus.Product.is_reducible(), and core.base_calculus.Sum.requires_brackets().