mathmaker  0.4(alpha)
Public Member Functions
core.root_calculus.Calculable Class Reference

Abstract mother class of all (calculable) mathematical objects It is not possible to implement any Calculable object. More...

Inheritance diagram for core.root_calculus.Calculable:
core.root_calculus.Evaluable core.base.Printable core.base.NamedObject core.base.Clonable core.root_calculus.Signed core.root_calculus.Exponented core.root_calculus.Value core.base_calculus.Item core.base_calculus.Operation core.base_calculus.Function core.base_calculus.CommutativeOperation core.base_calculus.Quotient core.base_calculus.SquareRoot core.base_calculus.Product core.base_calculus.Sum core.base_calculus.Fraction core.base_calculus.Expandable core.base_calculus.Monomial core.base_calculus.Polynomial core.base_calculus.BinomialIdentity

List of all members.

Public Member Functions

def get_iteration_list
 Returns the list of elements to iter over.
def calculate_next_step
 Returns the next Calculable object during a numeric calculation.
def expand_and_reduce_next_step
 Returns the next step of expansion/reduction of the Sum So, either the Sum of its expanded/reduced terms, or the Sum itself reduced, or None.
def __len__
 Returns the number of elements of the Exponented.
def __iter__
 This will iter over the content of the Calculable.
def next
def multiply_symbol_is_required
 True if the usual writing rules require a × between two factors.
def requires_brackets
 True if the argument requires brackets in a product For instance, a Sum with several terms or a negative Item.
def requires_inner_brackets
 True if the argument requires inner brackets The reason for requiring them is having an exponent different from 1 and several terms or factors (in the case of Products & Sums)
def substitute
 Uses the given lexicon to substitute literal Values in self.
def is_displ_as_a_single_1
 True if the object can be displayed as a single 1 For instance, the Product 1×1×1×1 or the Sum 0 + 0 + 1 + 0.
def is_displ_as_a_single_int
 True if the object can be displayed as a single int.
def is_displ_as_a_single_minus_1
 True if the object can be displayed as a single -1 For instance, the Product 1×1×(-1)×1 or the Sum 0 + 0 - 1 + 0.
def is_displ_as_a_single_0
 True if the object can be displayed as a single 0 For instance, the Product 0×0×0×0 (but not 0×1) or the Sum 0 + 0 + 0 (but not 0 + 1 - 1)
def is_displ_as_a_single_numeric_Item
 True if the object is or only contains one numeric Item.
def is_displ_as_a_single_neutral
 True if the object can be considered as a neutral element.

Detailed Description

Abstract mother class of all (calculable) mathematical objects It is not possible to implement any Calculable object.

Definition at line 177 of file root_calculus.py.


Member Function Documentation

Returns the next step of expansion/reduction of the Sum So, either the Sum of its expanded/reduced terms, or the Sum itself reduced, or None.

Returns:
Exponented

Reimplemented in core.base_calculus.BinomialIdentity, core.base_calculus.Expandable, core.base_calculus.Sum, core.base_calculus.Product, core.base_calculus.Fraction, core.base_calculus.SquareRoot, and core.base_calculus.Item.

Definition at line 207 of file root_calculus.py.

def core.root_calculus.Calculable.multiply_symbol_is_required (   self,
  objct,
  position 
)

True if the usual writing rules require a × between two factors.

Parameters:
objctThe other one
positionThe position (integer) of self in the Product
Returns:
True if the writing rules require × between self & obj

Reimplemented in core.base_calculus.Sum, core.base_calculus.Product, core.base_calculus.Quotient, core.base_calculus.SquareRoot, and core.base_calculus.Item.

Definition at line 244 of file root_calculus.py.

def core.root_calculus.Calculable.requires_brackets (   self,
  position 
)

True if the argument requires brackets in a product For instance, a Sum with several terms or a negative Item.

Parameters:
positionThe position of the object in the Product
Returns:
True if the object requires brackets in a Product

Reimplemented in core.base_calculus.Sum, core.base_calculus.Product, core.base_calculus.Quotient, core.base_calculus.SquareRoot, and core.base_calculus.Item.

Definition at line 258 of file root_calculus.py.

True if the argument requires inner brackets The reason for requiring them is having an exponent different from 1 and several terms or factors (in the case of Products & Sums)

Returns:
True if the object requires inner brackets

Reimplemented in core.base_calculus.Sum, core.base_calculus.Product, core.base_calculus.Quotient, core.base_calculus.SquareRoot, and core.base_calculus.Item.

Definition at line 271 of file root_calculus.py.


The documentation for this class was generated from the following file: